New Word Vector Representation for Semantic Clustering

نویسنده

  • Salma Jamoussi
چکیده

RÉSUMÉ. L’idée que nous défendons dans cet article est qu’il est possible d’obtenir des concepts sémantiques significatifs par des méthodes de classification automatique. Pour ce faire, nous commençons par proposer des mesures permettant de quantifier les relations sémantiques entre mots. Ensuite, nous utilisons les méthodes de classification non supervisée pour construire les concepts d’une manière automatique. Nous testons alors deux méthodes de partitionnement : l’algorithme des K-means et les cartes de Kohonen. Ensuite, nous utilisons le réseau bayésien AutoClass conçu pour la classification non supervisée. Pour grouper les mots du vocabulaire en différentes classes, nous avons testé trois représentations vectorielles des mots. La première est une représentation contextuelle simple. La deuxième associe à chaque mot un vecteur de valeurs représentant sa similarité avec tous les mots du lexique. Enfin, la troisième représentation est une combinaison des deux premières.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Joint Semantic Vector Representation Model for Text Clustering and Classification

Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...

متن کامل

Word clustering effect on vocabulary learning of EFL learners: A case of semantic versus phonological clustering

The aim of this study is to determine the effect of word clustering method on vocabulary learning of Iranian EFL learners through a case of semantic versus phonological clustering. To this effect, 80 homogeneous students from four intermediate classes at an English institute in Torbat e Heydariyeh participated in this research. They were assigned to four groups according to semantic versus phon...

متن کامل

Named Entity Recognition in Persian Text using Deep Learning

Named entities recognition is a fundamental task in the field of natural language processing. It is also known as a subset of information extraction. The process of recognizing named entities aims at finding proper nouns in the text and classifying them into predetermined classes such as names of people, organizations, and places. In this paper, we propose a named entity recognizer which benefi...

متن کامل

Sense-aware Semantic Analysis: A Multi-prototype Word Representation Model using Wikipedia

Human languages are naturally ambiguous, which makes it difficult to automatically understand the semantics of text. Most vector space models (VSM) treat all occurrences of a word as the same and build a single vector to represent the meaning of a word, which fails to capture any ambiguity. We present sense-aware semantic analysis (SaSA), a multi-prototype VSM for word representation based on W...

متن کامل

Sense-Aaware Semantic Analysis: A Multi-Prototype Word Representation Model Using Wikipedia

Human languages are naturally ambiguous, which makes it difficult to automatically understand the semantics of text. Most vector space models (VSM) treat all occurrences of a word as the same and build a single vector to represent the meaning of a word, which fails to capture any ambiguity. We present sense-aware semantic analysis (SaSA), a multi-prototype VSM for word representation based on W...

متن کامل

Document Representation and Clustering with WordNet Based Similarity Rough Set Model

Most studies on document clustering till date use Vector Space Model (VSM) to represent documents in the document space, where documents are denoted by a vector in a word vector space. The standard VSM does not take into account the semantic relatedness between terms. Thus, terms with some semantic similarity are dealt with in the same way as terms with no semantic relatedness. Since this uncon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • TAL

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2009